Regency Logo

Regency Generators Knowledge Base

What happens when you apply load to a brushless AC alternator? What are the effects?

What happens when you apply load to a brushless AC alternator?

When you apply load to an AC alternator, it will respond with a drop in the voltage at the terminals. Conversely removal of some load will result in an increase in voltage at the generator terminals. The magnitude of the drop depends on key factors such as the design of the alternator, its component parts, its excitation system (for example, shunt, Aux Wound and PMG)and its AVR.

If the AC alternator is connected to a diesel engine, the engine will also react to the application of load and it will have an effect on the whole diesel generator system.

When load is applied to the AC alternator, the increase in current causes a decrease in voltage in the main stator and generator terminals. This drop in voltage is called "transient voltage dip" The excitation system then reacts to try and return the voltage to the pre-set steady state.

Sensing the reduction in voltage via its connection to the alternator terminals, the AVR responds by increasing its excitation current to the exciter stator, which in turn increases the voltage at the generator terminals.

Unlike applying load to a fixed speed engine, where you will normally hear the engine react, the alternator voltage dip is normally only visible using measuring equipment such as a multi meter or by reading from a generator control panel.

In situations where the load applied is large, the voltage may drop significantly and the effect can be seen. Lighting connected to the load may flicker sensitive electronic equipment may turn off or fail.

Can you estimate the expected Voltage Drop?

Here is a graph of the transient voltage dip on a large 1000kVA Stamford Alternator running at 50Hz. This is the locked rotor starting curve from the HCI634J, which has a PMG excitation system.

alternator-starting-load-apply-transient-voltage-dip.jpg

The kVA you are trying to apply to the alternator in along the horizontal X axis and the resultant voltage drop is along the vertical Y axis. The 5 curved lines represent the different voltages the alternator could be running at. So for this alternator, running at 400V, if we applied 1000kVA of load in a single step we would get a voltage drop of 16%. You can check this by finding 1000kVA on the horizontal axis, following it up to third curved line (which is the 400V line) and then reading this across to the vertical axis, where you should get 16%.

In this case, we were running at 400V, so we would take 16% from our 400V, which would leave us with 336V. This assumes that the engine speed hasn't fallen by more than 4%, then you should allow for an additional voltage drop.

As the engine speed falls, the frequency of the supply will also fall, as the alternator and engine are coupled together (either single bearing or twin bearing) they must both turn at the same speed. So for the 50Hz example above, if the engine speed drops from 1500RPM by 4% to 1440 RPM, the frequency will drop from 50Hz to 48Hz also.